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Abstract — We compare web caching strategies based on the 

least recently used (LRU) and the least frequently used (LFU) 

replacement principles with optimum caching according to 

Belady’s algorithm. The achievable hit rates of the strategies are 

shown to improve with the exploited knowledge about the request 

pattern while the computation effort is also increasing. The re-

sults give an overview of performance tradeoffs in the whole rele-

vant range for web caching with Zipf request pattern.  

In a second part, we study a combined approach of the opti-

mum strategy for a limited look-ahead with LRU, LFU or other 

non-predictive methods. We evaluate the hit rate gain depending 

on the extent of the look-ahead for request traces and for the 

independent reference model (IRM) via simulation and derive an 

analytic confirmation of the observed behaviour. It is shown that 

caching for video streaming can benefit from the proposed look-

ahead technique, when replacement decisions can be partly re-

vised due to new requests being encountered during long lasting 

content updates. 

Keywords — Web cache strategies, optimum caching, Belady’s 

algorithm, hit rate, simulation, Zipf distributed requests, least 

recently used (LRU), least frequently used (LFU)  

I. INTRODUCTION 

Caching strategies have an important role for optimizing the 

transport and quality of experience of popular web services. 

Caching architectures on global scale are distributing the ma-
jor traffic volume on the Internet, while servers and caches 

close to the users become more important for a broadening set 

of 5G applications with stringent delay bounds. 

We study the hit rate and update effort of usual caching 

strategies versus optimum caching as an upper performance 

bound. The three basic methods for performance estimation of 
caching strategies are simulation via traces, simulation of ran-

domly generated request pattern following a synthetic model, 

and analysis. In a first part, we involve all three methods to 

combine their strengths to evaluate cache performance. We 

evaluate caching methods based on web request traces from           

F-Secure’s caching platform [5], which exhibit Zipf distributed 
requests with low time dynamics in the set of popular objects. 

Experience from the traces as well as from other measure-

ment-based studies of web requests [13][23] confirm the rele-

vance of the independent reference model (IRM) as a simple 

and realistic benchmark for web cache performance. A num-

ber of studies suggest non-predictive caching variants improv-
ing the LRU hit rate [12][13][17][18][20][21][23]. Only few of 

them include a comparison with the optimum caching bound. 

Early work on optimum caching does not refer to web caches 

[2][16] and recent work [21] shows largely different gaps of 

usual caching methods towards Belady’s clairvoyant strategy 

depending on the different scenarios.  

Therefore we evaluate the cache hit rate for independent 
Zipf distributed requests, which are confirmed to represent a 

realistic model of web request pattern. We obtain comprehen-

sive results in a series of simulations covering the whole rele-

vant parameter range. The shape parameter β  of the Zipf dis-
tribution and the ratio M/N of the cache size to the size of the 

object catalogue (in number of objects) turn out to have most 

significant impact on the hit rates and the differences in the 
performance of the caching strategies.   

Cache performance results are partly confirmed by analyti-

cal methods. The Che approximation [4] is known to provide a 

good estimate of the LRU hit rate for IRM requests [11][12], 
although without clear precision bound. The LFU hit rate is 

approaching the sum of the top-M IRM request probabilities. 

Belady’s algorithm corresponds to a simulation with precom-

putation as pointed out in Section II. A recent study [9] de-

rives new analysis results on IRM hit rates for optimum cach-

ing but exact analysis is experienced to become intractable for 
moderate or large cache size. However, an equivalent Markov 

approach is established in this study as an alternative to 

Belady’s algorithm for evaluating simulations and traces. 

In a second part, we study scenarios to exploit the optimum 

caching gain by limited look-ahead. We focus on scenarios, 

with non-negligible delay from the decision to evict data from 

the cache until the data is overwritten by uploads of new data. 

Uploads of video streams usually can last for several minutes. 

During this time, a decision to evict a video can be withdrawn 
when new requests are encountered where the portion of data 

is kept in the cache that has not yet been evicted. In this way, 

limited look-ahead scenarios can improve the cache perfor-

mance towards the optimum caching bound. Other approaches 

have been proposed to improve cache efficiency using aware-

ness of optimum caching and Belady’s algorithm [1][6][8]. 

The derived performance results for a single caching system 

represent the essential component in extended studies on dis-

tributed and/or hierarchical caching systems in content deliv-

ery via clouds, CDN and ICN architectures [4][10][19][24]. 

We briefly introduce usual caching schemes and Belady’s 

algorithm in Section II. Zipf request pattern are defined in 

Section III. Evaluations of request traces are presented in sec-

tion IV and evaluations of independent Zipf distributed re-
quests in Section V. Section VI is devoted to the efficiency of 

limited look-ahead scenarios followed by the conclusions. 



Table 1: Main performance properties of basic caching methods

II.  PERFORMANCE COMPARISON OF WEB CACHING

We start comparing the performance of LRU, LFU 

timum caching as basic strategies for web caching 

consider useful combinations of those methods in further 

evaluations. An overview of the expected tradeoff
rate performance is given especially for independent Zipf di

tributed requests, which are regarded as a realistic benchmark 

for accessing web platforms. Moreover, we include 

evaluations from F-Secure’s caching platform to verify the 

accuracy of simulations under the independent

(IRM) [5]. We also address the update effort of 
methods, whose main properties are summariz

The least recently used (LRU) principle, which keeps the 

most recently requested items in a cache of size 

used because of its simple implementation and updates
The currently requested object is always put on top of a stack

being organized as a double chained list, whereas the b

object of the cache is evicted in case of a cache miss

leads to low constant effort for updating the stack per request 

by manipulating a few pointers belonging to
the bottom object. On the other hand, the achievable

rate is low [12][17][18][21] because relevant information for 

predicting the next requests is not fully exploited

The least frequently used (LFU) principle puts
with highest request count into the cache and therefore mai

tains statistics of past requests per object. 

independent reference model (IRM) with request probabilities

p1 ≥ p2 ≥ … ≥ pN for a fixed catalogue of N 

will collect the most popular objects in the cache in

steady state behaviour. For cache size M, LFU approaches
hit rate hLFU = p1 + p2 + … + pM, which is the maximum IRM 

hit rate for any caching strategy based on past requests.

LFU can be implemented as a sorted list of 

ing to the request counts. Updates of an LFU cache can still be
done at constant O(1) effort per request, where only the count 

of the requested object is incremented [22]. Variants with li

ited request count are preferable to pure LFU in order to adapt 

to changing popularity of web content. Sliding window LFU is 

often used as a variant, which restricts the count statistics

W most recent requests. Sliding window LFU can 
plemented at constant effort per request. Score 

tegies [12] provide a flexible alternative with constant update 

effort, which include window LFU and other 
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Figure 1: Data set for efficient support of Belady’s algorithm
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While  the precomputation  of  Tok
+(t ) is executed at con-

stant effort per request, Belady’s algorithm finally requires 

O(log(M)) complexity per request for inserting objects into the 
sorted list of cached objects, e.g. via heapsort [8][17]. 

III. HIT RATE EVALUATION FOR ZIPF REQUEST PATTERN 

In the following comparison of hit rates for LRU, LFU and 

optimum caching strategies, we assume Zipf distributed re-
quests as confirmed in many studies about access pattern to 

web platforms [3][12][13][14]. Zipf’s law assigns decreasing 

request probabilities z(r) corresponding to the objects’ popu-

larity ranks r ∈ {1, 2, …, N}: 
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with shape parameter β  and a normalization constant α. The 
measurement studies have experienced Zipf distributed re-

quests on a number of different web platforms with estima-

tions of the shape parameter β  in the range –0.4 ≥ β   ≥ –1.  

IV. EVALUATION FOR TRACES OF WEB REQUESTS  

We consider trace-based evaluation of requests from              

F-Secure’s platform [5] as well as analytic and simulation re-

sults of IRM requests in the next section. Trace-based results 

are shown for an example of about 26 million requests to 2.09 

million keys over a one week period from Oct. 17-23, 2016. 

Again, a Zipf-like distribution with shape parameter β  ≈ –0.75 is 

observed for the top-N most popular objects in the trace, where 

about 50% of the requests are addressing the top-10 000 keys. 

The traces were collected from a caching proxy, through 

which F-Secure's applications queried a backend database for 
information on application files or URLs they encountered. 

After stripping any personally identifiable information from 

the data, a hash was calculated from the object data, represent-

ing a query key. No information that could identify from 

which individual client a particular query came from was kept. 

The traces contain only a list of hash strings with timestamps. 
The pool of clients connecting to the caching proxy consists 

almost entirely of Android mobile devices, querying hashes of 

new and updated Android application files.  

We compare cache hit rates for optimum caching with LRU 

and LFU strategies. Each evaluation includes the complete 
trace starting from an empty cache. Pure LFU includes the 

count statistics over the whole one week trace, which is sub-

ject to an inflexibility regarding dynamics on shorter time 

scales. Therefore LFU variants over a limited time frame (slid-

ing window LFU) are more efficient. The time scale ranging 

from an hour up to a day is experienced to be most relevant for 
the dynamics in web request pattern [13][23]. Therefore we 

add an evaluation for LFU with daily count statistics, i.e. with 

counts being reset at the start of each day.  

Figure 2 shows how the hit rate is developing with the 
cache size for the alternative strategies. On the whole, caching 

is efficient, such that a cache with size M/N = 1‰ of the cata-

logue size N achieves more than 20% hit rate in all cases. 

However, there is a large gap of up to 15% hit rate visible be-

tween LRU and LFU and a gap of about half the size between 

LFU and optimum caching. LFU with daily count statistics 

improves the LFU hit rate with count over the whole week  by 

only 1-2%. We also studied sliding window LFU [12][17] 
with count statistics over the K most recent requests. Then a 

maximum hit rate was obtained for K ≈ 50 000 roughly corre-
sponding to 20 minute of the trace, but the improvement over 

LFU with daily request count turned out to be negligible.   

The results confirm that LFU based on daily statistics is 

close to optimum for non-predictive caching strategies, but 
still leaves a considerable gap open towards clairvoyant opti-

mum caching. 

V. EVALUATION FOR IRM ZIPF REQUEST PATTERN 

 In the sequel, we evaluate the cache hit rate for independent 
Zipf distributed requests via simulation. Assuming IRM Zipf 

request pattern, a caching system is specified by 3 parameters: 

the catalogue size N, the cache size M and the shape parameter 

β  of the Zipf distribution. The results give an overview of the 
hit rate performance in the relevant range of those parameters. 

Each simulation is running over at least 108 requests, where a 

cache filling phase at the start is ignored. The precision is val-
idated via 2nd order statistics [12], confirming standard devia-

tions for the simulated hit rates in the order 10–4. The Markov 

model of optimum caching is used for an independent check 

of Belady’s algorithm [9].  

Figure 3 - Figure 6 show results for β = 0, –0.5, –0.75, –1. 

The case β = 0 refers to a uniform request distribution, where-

as the three other cases are distributed over the range, which is 
experienced as most relevant in measurements of web request 

pattern (–0.4 ≥ β  ≥ –1). The performance of optimum caching 
represents the main new insight of this study, which has not 

been considered for web caching examples or Zipf request 

pattern in basic work in literature [2][8][9][15][16]. 

The LRU and LFU hit rates for uniform request shown in 

Figure 3 are equal the ratio M/N of the cache size to the cata-
logue and mark a common worst case for both strategies. 

However, predictive optimum caching achieves much higher 

hit rates hOpt, which mainly depend on the fraction M/N, with 

almost identical curves for N  =  103, …, 106 within the bounds  

.                                     

 

Figure 2: Cache performance for a one week web request trace 
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Figure 3: Hit rate of optimum caching for uniform requests 

 

Figure 4: Cache hit rates for Zipf law requests with β = –0.5 

Although uniform requests are a worst case for optimum cach-

ing as well, the gain over LRU and LFU is extreme, up to 37%. 

Figure 4 shows results for β  = –0.5 which corresponds to a 
moderate request focus on popular objects within the relevant 
range of web request pattern. The hit rates still mainly depend 

on the fraction M/N of objects in the cache, leading to bundles 

of four closely adjacent curves for N = 103 , …, 106 with larg-

est deviation for optimum caching in case N = 1000. Com-

pared to uniform requests, the hit rate gap of LRU and LFU 

towards optimum caching becomes smaller but still opens up 
to 30% for LRU and 20% for LFU.  

For Zipf distributions with more skewness towards popular 

objects for β → –1, caching efficiency depends on both param-

eters M and N, rather than mainly on M/N as for 0 > β  > –0.5.  

Thus Figure 5 (β = –0.75) and Figure 6 (β = –1) show two hit 
rate curves for N = 104 and N = 106  for each of the three con-

sidered strategies. In general, cache hit rates essentially in-

crease for all caching strategies with higher request focus on 

popular objects. However, LRU hit rates remain far below op-

timum caching in all cases of small and moderate cache sizes. 

 
Figure 5: Cache hit rates for Zipf law requests with β = –0.75 

 

Figure 6: Cache hit rates for Zipf law requests with β = –1 

On the other hand, LFU can lower the hit rate gap towards   

optimum caching for β → –1, since count statistics on past re-
quests are more useful for higher concentration on few popular 

items. The results suggest hOpt – hLFU ≈ 0.25 + 0.2 β   as a rough 

estimate of the gap for –0.5 ≥ β  ≥ –1. Extensions for β < –1 
are possible, but this range is not relevant for web caching. 

VI. USING LIMITED KNOWLEDGE OF FUTURE REQUESTS 

A. Look-ahead options for caching due to delayed uploads 

The previous results show a significant advantage of opti-

mum caching over other methods owing to knowledge of fu-

ture requests. Often some partial knowledge about upcoming 

requests is available and used for prediction and prefetching  

[1][6]. Within this scope, we evaluate how far a limited look-

ahead can realize part of the optimum caching gain when a 

fixed number L of the next upcoming requests are known, 

which corresponds to a more or less fixed time window. 

Such a limited look-ahead can be realized, when there is a 

delay between a request and the corresponding upload of con-
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tent to the cache. During the delay time some “future” requests 

become visible which can still be regarded in a replacement 

decision until the update is actually processed. Data uploads 
are initiated only in case of cache misses, when external ob-

jects is requested that have to be retrieved from a server or 

higher layer cache. Therefore we can always assume a short 

transfer delay for web cache updates between data centers, 

roughly in a range of 0.1s - 1s for small data units.   

A considerable number of requests is served by web caches 
already in short time. Wikipedia as a popular web site reported 

peaks of over 50 000 requests per second in 2014 being han-

dled by a few caching servers [24]. Akamai’s CDN had peak 

loads beyond 30 million requests per second in 2013 [7], which 

are distributed over a large web caching hierarchy. Thus cach-

es for popular web content usually have information about 
several thousand upcoming requests available until data is 

retrieved for an update, even in short transfer delay scenarios. 

Moreover, we consider video streaming as a scenario with 

much longer upload times, when uploads are synchronized with 

the video stream to the user. Then data is continuously trans-

ferred in small chunks during the video viewing time, which 
can last in a range over seconds and minutes up to an hour 

[14]. While data chunks of a video in the cache are being over-

written, new requests to the video can be regarded in a look-

ahead scenario to stop further replacement. When the replace-

ment of a one minute video is stopped, e.g. after 15 s, then 
75% of the data can still be kept to serve a new request.  

B. Combined caching scheme to exploit limited look-ahead 

In order to utilize a limited look-ahead L for improved hit 

rates, we suggest combining Belady´s algorithm for those ob-

jects with known next request time (< L) with a secondary 

usual caching scheme (LFU, LRU etc.) for all other objects.  

At a request rT, all objects in the cache with a next request 

before rT+L+1, i.e. within the look-ahead window are sorted 

according to their next request time as shown for Belady’s 

algorithm in Figure 1. The next request time of other cached 

objects is unknown and invalidated, e.g. as 0. After request rT, 

the sorted list is updated by reinserting the requested object, if 
its next request comes before rT+L+1. The object requested at 

rT+L+1 is added at the end of the list, if the latter is in the cache 

with a previously invalid next request time. 

If the sorted cache list of object with valid next request 

times exceeds the cache size M, then the object with the far-
thest next request time is evicted. Otherwise, if the list is 

shorter than the cache size, then all objects in the list stay in 

the cache, whereas the secondary caching strategy (LRU, LFU 

or another) is applied to select and update the content in the 

remaining part of the cache. 

C. Hit rate evaluation for the limited look-ahead scheme  

We simulate the gain obtainable by a limited look-ahead for 

the next L requests using a combined strategy of optimum 
caching with LRU. We show two evaluations extending the 

previous results for the one week trace of Figure 2 and for the 

Zipf distributed requests with β = –0.5 of Figure 4. 

The performance of limited look-ahead is presented for both 

cases in Figure 7 and Figure 8, respectively. They include the 

curves for the optimum caching hit rate and for LRU known 
from Figure 2 and Figure 4 as the maximum and the mini-

mum. Moreover, four curves are added in between, corre-

sponding to evaluations of four look-ahead variants with dif-

ferent limit L. In each case we observe a common effect that 

caching performance of limited look-ahead 

• starts along the optimum caching curve up to cache size M*, 

• then only slightly improves with increasing cache size be-

yond M*, while sliding from optimum caching performance 

towards the LRU curve  

• and finally approaches the LRU curve for large cache size. 

 

Figure 7: Effect of limited look-ahead for trace data   

 

Figure 8: Effect of limited look-ahead for Zipf law requests  

When optimum caching performance is achieved, the cache 

is almost filled with objects whose next request comes in the 

limited look-ahead region before rT+L+1. Otherwise, many ob-

jects are encountered, whose next request comes beyond the 

limit. We obtain similar results for combinations with LFU or 
another strategy instead of LRU, where the LRU hit rate is 

replaced by their curve as the lower bound. 

D. Analytical result on optimum limited look-ahead caching 

We can derive an analytic result for the cache size M* up to 
which optimum caching is fully exploited with limited look-

ahead for IRM requests. M* marks the points in Figure 8, at 
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which the limited look-ahead curves start to deviate from op-

timum caching. Under IRM, we have geometrically distributed 

intervals Ij between requests to the same object oj depending 
on the request probability pj. We can compute the probability 

Pr{Ij ≤ L} that the next request comes within the limit L, the 

mean number E(Ij | Ij ≤ L) of requests that such an object oj has 

to stay in the cache until a next hit on oj. Both values finally 

determine the mean number E(n≤ L) of objects with next re-

quest before rT+L+1:  
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 If M < E(n≤ L) then the cache is expected to fill up with ob-
jects having a valid next request time within the limit L, such 

that optimum caching is prevalently applied for updates. We 

calculate E(n≤ L) for the four curves with different limits L in 

Figure 8 based on the underlying Zipf request probabilities pj : 

E(n≤ 1000) ≈ 12.7; E(n≤ 10 000) ≈ 740.3; E(n≤ 30 000) ≈ 4328; E(n≤ 100 000) 

≈ 23 079. Those numbers precisely mark the cache sizes at 
which each limited look-ahead curve starts deviating from 

optimum caching.  
The results in Figure 7 and Figure 8 indicate that the pro-

posed combined caching strategy with limited look-ahead has 

significant effect for L ≥ 10 000, and in the trace evaluation 

already for L ≥ 1 000. The trace is taken from a cache serving 

about 100 requests per second. Thus a delay of 10 s - 100 s is 

sufficient to make an exploitation of the look-ahead beneficial. 
Concluding, the look-ahead can improve cache efficiency for 

video streaming, with delays of > 10 s until most of the data is 

uploaded, whereas for short transfer delays < 1 s the look-ahead 

will be reasonable only for caches serving huge request rates. 

CONCLUSIONS AND OUTLOOK 

 The comparison of usual non-predictive caching schemes 
with clairvoyant optimum caching due to Belady’s algorithm 
shows large gaps in the hit rate not only in extreme cases for 
uniform requests, but also over the complete range of Zipf re-
quest pattern that is confirmed to be relevant for web caching 
in literature. The results in Figure 3 - Figure 6 give an overview 
of the expected hit rate performance and differences in compar-
ison of optimum caching, LFU and LRU for the independent 
reference model. Our trace-based study confirms that such Zipf 
distributed IRM results meet request pattern on web platforms. 

The evaluation of a combined caching method making use of 
limited look-ahead scenarios enabled by delays in cache up-
loads show that optimum caching is useful not only to provide 
an upper bound on cache hit rates, but can partly be exploited 
for caching of video streams and for caches serving huge re-
quest workloads. A more detailed analysis of the impact of 
caching and request specific parameters on the applicability of 
the limited look-ahead scheme is for future study. 
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