
Optimum Caching versus LRU and LFU:
Comparison and Combined Limited Look-Ahead Strategies

 Gerhard Hasslinger Juho Heikkinen Konstantinos Ntougias Frank Hasslinger Oliver Hohlfeld

 Deutsche Telekom F-Secure Athens Information Darmstadt Univ. of Tech. RWTH Aachen

 Darmstadt, Germany Helsinki, Finland Technology Darmstadt, Germany Aachen, Germany

 gerhard.hasslinger@ juho.heikkinen@ Athens, Greece frank.hasslinger@ oliver@comsys.
 telekom.de f-secure.com kontou@ait.gr stud.tu-darmstadt.de rwth-aachen.de

Abstract — We compare web caching strategies based on the

least recently used (LRU) and the least frequently used (LFU)

replacement principles with optimum caching according to

Belady’s algorithm. The achievable hit rates of the strategies are

shown to improve with the exploited knowledge about the request

pattern while the computation effort is also increasing. The re-

sults give an overview of performance tradeoffs in the whole rele-

vant range for web caching with Zipf request pattern.

In a second part, we study a combined approach of the opti-

mum strategy for a limited look-ahead with LRU, LFU or other

non-predictive methods. We evaluate the hit rate gain depending

on the extent of the look-ahead for request traces and for the

independent reference model (IRM) via simulation and derive an

analytic confirmation of the observed behaviour. It is shown that

caching for video streaming can benefit from the proposed look-

ahead technique, when replacement decisions can be partly re-

vised due to new requests being encountered during long lasting

content updates.

Keywords — Web cache strategies, optimum caching, Belady’s

algorithm, hit rate, simulation, Zipf distributed requests, least

recently used (LRU), least frequently used (LFU)

I. INTRODUCTION

Caching strategies have an important role for optimizing the

transport and quality of experience of popular web services.

Caching architectures on global scale are distributing the ma-
jor traffic volume on the Internet, while servers and caches

close to the users become more important for a broadening set

of 5G applications with stringent delay bounds.

We study the hit rate and update effort of usual caching

strategies versus optimum caching as an upper performance

bound. The three basic methods for performance estimation of
caching strategies are simulation via traces, simulation of ran-

domly generated request pattern following a synthetic model,

and analysis. In a first part, we involve all three methods to

combine their strengths to evaluate cache performance. We

evaluate caching methods based on web request traces from

F-Secure’s caching platform [5], which exhibit Zipf distributed
requests with low time dynamics in the set of popular objects.

Experience from the traces as well as from other measure-

ment-based studies of web requests [13][23] confirm the rele-

vance of the independent reference model (IRM) as a simple

and realistic benchmark for web cache performance. A num-

ber of studies suggest non-predictive caching variants improv-
ing the LRU hit rate [12][13][17][18][20][21][23]. Only few of

them include a comparison with the optimum caching bound.

Early work on optimum caching does not refer to web caches

[2][16] and recent work [21] shows largely different gaps of

usual caching methods towards Belady’s clairvoyant strategy

depending on the different scenarios.

Therefore we evaluate the cache hit rate for independent
Zipf distributed requests, which are confirmed to represent a

realistic model of web request pattern. We obtain comprehen-

sive results in a series of simulations covering the whole rele-

vant parameter range. The shape parameter β of the Zipf dis-
tribution and the ratio M/N of the cache size to the size of the

object catalogue (in number of objects) turn out to have most

significant impact on the hit rates and the differences in the
performance of the caching strategies.

Cache performance results are partly confirmed by analyti-

cal methods. The Che approximation [4] is known to provide a

good estimate of the LRU hit rate for IRM requests [11][12],
although without clear precision bound. The LFU hit rate is

approaching the sum of the top-M IRM request probabilities.

Belady’s algorithm corresponds to a simulation with precom-

putation as pointed out in Section II. A recent study [9] de-

rives new analysis results on IRM hit rates for optimum cach-

ing but exact analysis is experienced to become intractable for
moderate or large cache size. However, an equivalent Markov

approach is established in this study as an alternative to

Belady’s algorithm for evaluating simulations and traces.

In a second part, we study scenarios to exploit the optimum

caching gain by limited look-ahead. We focus on scenarios,

with non-negligible delay from the decision to evict data from

the cache until the data is overwritten by uploads of new data.

Uploads of video streams usually can last for several minutes.

During this time, a decision to evict a video can be withdrawn
when new requests are encountered where the portion of data

is kept in the cache that has not yet been evicted. In this way,

limited look-ahead scenarios can improve the cache perfor-

mance towards the optimum caching bound. Other approaches

have been proposed to improve cache efficiency using aware-

ness of optimum caching and Belady’s algorithm [1][6][8].

The derived performance results for a single caching system

represent the essential component in extended studies on dis-

tributed and/or hierarchical caching systems in content deliv-

ery via clouds, CDN and ICN architectures [4][10][19][24].

We briefly introduce usual caching schemes and Belady’s

algorithm in Section II. Zipf request pattern are defined in

Section III. Evaluations of request traces are presented in sec-

tion IV and evaluations of independent Zipf distributed re-
quests in Section V. Section VI is devoted to the efficiency of

limited look-ahead scenarios followed by the conclusions.

Table 1: Main performance properties of basic caching methods

II. PERFORMANCE COMPARISON OF WEB CACHING

We start comparing the performance of LRU, LFU

timum caching as basic strategies for web caching

consider useful combinations of those methods in further

evaluations. An overview of the expected tradeoff
rate performance is given especially for independent Zipf di

tributed requests, which are regarded as a realistic benchmark

for accessing web platforms. Moreover, we include

evaluations from F-Secure’s caching platform to verify the

accuracy of simulations under the independent

(IRM) [5]. We also address the update effort of
methods, whose main properties are summariz

The least recently used (LRU) principle, which keeps the

most recently requested items in a cache of size

used because of its simple implementation and updates
The currently requested object is always put on top of a stack

being organized as a double chained list, whereas the b

object of the cache is evicted in case of a cache miss

leads to low constant effort for updating the stack per request

by manipulating a few pointers belonging to
the bottom object. On the other hand, the achievable

rate is low [12][17][18][21] because relevant information for

predicting the next requests is not fully exploited

The least frequently used (LFU) principle puts
with highest request count into the cache and therefore mai

tains statistics of past requests per object.

independent reference model (IRM) with request probabilities

p1 ≥ p2 ≥ … ≥ pN for a fixed catalogue of N

will collect the most popular objects in the cache in

steady state behaviour. For cache size M, LFU approaches
hit rate hLFU = p1 + p2 + … + pM, which is the maximum IRM

hit rate for any caching strategy based on past requests.

LFU can be implemented as a sorted list of

ing to the request counts. Updates of an LFU cache can still be
done at constant O(1) effort per request, where only the count

of the requested object is incremented [22]. Variants with li

ited request count are preferable to pure LFU in order to adapt

to changing popularity of web content. Sliding window LFU is

often used as a variant, which restricts the count statistics

W most recent requests. Sliding window LFU can
plemented at constant effort per request. Score

tegies [12] provide a flexible alternative with constant update

effort, which include window LFU and other

Table 1: Main performance properties of basic caching methods

ACHING STRATEGIES

LRU, LFU and op-

for web caching and we

methods in further

tradeoff in the hit
especially for independent Zipf dis-

tributed requests, which are regarded as a realistic benchmark

e include trace based

Secure’s caching platform to verify the

independent reference model

fort of the caching
summarized in Table 1.

principle, which keeps the M

most recently requested items in a cache of size M, is widely

s simple implementation and updates [4][20].
requested object is always put on top of a stack

a double chained list, whereas the bottom

in case of a cache miss [12]. This

leads to low constant effort for updating the stack per request

by manipulating a few pointers belonging to the requested and
achievable LRU hit

because relevant information for

requests is not fully exploited.

principle puts the objects
and therefore main-

 If we assume an

model (IRM) with request probabilities

 objects, then LFU

objects in the cache in a long term

LFU approaches the
, which is the maximum IRM

past requests.

a sorted list of N items accord-

f an LFU cache can still be

per request, where only the count

Variants with lim-

st count are preferable to pure LFU in order to adapt

to changing popularity of web content. Sliding window LFU is

count statistics to the

ing window LFU can still be im-
core gated LRU stra-

provide a flexible alternative with constant update

and other scheme [17].

A completely different approach considers

with full information about future requests

algorithm is known to maximize

about the cache content based on the time until the next r

quest to each object. In case of a cache miss, the re
object is put into the cache, if its next request comes

than that of a cached object, replacing the object with longest

time until its next request. It is a greedy algorithm

abling the next possible hit in the future request se

 Therefore the implementation maintains

according to the time index of the

the future requests rt being available for 1

ed by a trace that has been monitored on a web platform or by

a random generator for simulating requests

ent IRM requests.

Together with object ok(t) being addressed at request

store the index Tok
+(t) of the next request to the

in a second array also for 1 ≤ t

if ok isn’t requested anymore. Figure
being required for efficient execution of

Tok
+(t) is determined by a single

future request sequence. During the scan,
the currently most recent requ

(Tok
– = 0 if there was no previous request to

fixed for a new request to ok in

time index Tok
– and Tok

– is then updated to

is a request to o2 and To2
– (T+3

at rT+4: To2
+(T+2) := T + 4; for rT+

Figure 1: Data set for efficient support of Belady’s algorithm

different approach considers the cache hit rate

with full information about future requests. Then Belady’s

maximize the hit rate [2], which decides

about the cache content based on the time until the next re-

quest to each object. In case of a cache miss, the requested
into the cache, if its next request comes earlier

a cached object, replacing the object with longest

It is a greedy algorithm, always en-

in the future request sequence rT.

implementation maintains a sorted cache list

e time index of the next requests. We assume

available for 1 ≤ t ≤ Tmax, provid-

trace that has been monitored on a web platform or by

for simulating requests, e.g., for independ-

being addressed at request rt we

next request to the same object ok

t ≤ Tmax, where Tok
+(t) = Tmax + 1

Figure 1 illustrates the data sets
being required for efficient execution of Belady’s algorithm.

a single complete scan through the

. During the scan, the time Tok
–(t) of

request to each object ok is stored

0 if there was no previous request to ok). Then Tok
+(t) is

in the scan backwards at previous

then updated to t. In Figure 1, rT+3

+3) = T ⇔ To2
+(T) := T + 3; next,

T+6: To1
+(T+5) := T + 6; etc.

for efficient support of Belady’s algorithm

While the precomputation of Tok
+(t) is executed at con-

stant effort per request, Belady’s algorithm finally requires

O(log(M)) complexity per request for inserting objects into the
sorted list of cached objects, e.g. via heapsort [8][17].

III. HIT RATE EVALUATION FOR ZIPF REQUEST PATTERN

In the following comparison of hit rates for LRU, LFU and

optimum caching strategies, we assume Zipf distributed re-
quests as confirmed in many studies about access pattern to

web platforms [3][12][13][14]. Zipf’s law assigns decreasing

request probabilities z(r) corresponding to the objects’ popu-

larity ranks r ∈ {1, 2, …, N}:

 =
==≤>=

N

r
rzrrz

1
/1)1(;0;0for)(ββ αβαα (1)

with shape parameter β and a normalization constant α. The
measurement studies have experienced Zipf distributed re-

quests on a number of different web platforms with estima-

tions of the shape parameter β in the range –0.4 ≥ β ≥ –1.

IV. EVALUATION FOR TRACES OF WEB REQUESTS

We consider trace-based evaluation of requests from

F-Secure’s platform [5] as well as analytic and simulation re-

sults of IRM requests in the next section. Trace-based results

are shown for an example of about 26 million requests to 2.09

million keys over a one week period from Oct. 17-23, 2016.

Again, a Zipf-like distribution with shape parameter β ≈ –0.75 is

observed for the top-N most popular objects in the trace, where

about 50% of the requests are addressing the top-10 000 keys.

The traces were collected from a caching proxy, through

which F-Secure's applications queried a backend database for
information on application files or URLs they encountered.

After stripping any personally identifiable information from

the data, a hash was calculated from the object data, represent-

ing a query key. No information that could identify from

which individual client a particular query came from was kept.

The traces contain only a list of hash strings with timestamps.
The pool of clients connecting to the caching proxy consists

almost entirely of Android mobile devices, querying hashes of

new and updated Android application files.

We compare cache hit rates for optimum caching with LRU

and LFU strategies. Each evaluation includes the complete
trace starting from an empty cache. Pure LFU includes the

count statistics over the whole one week trace, which is sub-

ject to an inflexibility regarding dynamics on shorter time

scales. Therefore LFU variants over a limited time frame (slid-

ing window LFU) are more efficient. The time scale ranging

from an hour up to a day is experienced to be most relevant for
the dynamics in web request pattern [13][23]. Therefore we

add an evaluation for LFU with daily count statistics, i.e. with

counts being reset at the start of each day.

Figure 2 shows how the hit rate is developing with the
cache size for the alternative strategies. On the whole, caching

is efficient, such that a cache with size M/N = 1‰ of the cata-

logue size N achieves more than 20% hit rate in all cases.

However, there is a large gap of up to 15% hit rate visible be-

tween LRU and LFU and a gap of about half the size between

LFU and optimum caching. LFU with daily count statistics

improves the LFU hit rate with count over the whole week by

only 1-2%. We also studied sliding window LFU [12][17]
with count statistics over the K most recent requests. Then a

maximum hit rate was obtained for K ≈ 50 000 roughly corre-
sponding to 20 minute of the trace, but the improvement over

LFU with daily request count turned out to be negligible.

The results confirm that LFU based on daily statistics is

close to optimum for non-predictive caching strategies, but
still leaves a considerable gap open towards clairvoyant opti-

mum caching.

V. EVALUATION FOR IRM ZIPF REQUEST PATTERN

 In the sequel, we evaluate the cache hit rate for independent
Zipf distributed requests via simulation. Assuming IRM Zipf

request pattern, a caching system is specified by 3 parameters:

the catalogue size N, the cache size M and the shape parameter

β of the Zipf distribution. The results give an overview of the
hit rate performance in the relevant range of those parameters.

Each simulation is running over at least 108 requests, where a

cache filling phase at the start is ignored. The precision is val-
idated via 2nd order statistics [12], confirming standard devia-

tions for the simulated hit rates in the order 10–4. The Markov

model of optimum caching is used for an independent check

of Belady’s algorithm [9].

Figure 3 - Figure 6 show results for β = 0, –0.5, –0.75, –1.

The case β = 0 refers to a uniform request distribution, where-

as the three other cases are distributed over the range, which is
experienced as most relevant in measurements of web request

pattern (–0.4 ≥ β ≥ –1). The performance of optimum caching
represents the main new insight of this study, which has not

been considered for web caching examples or Zipf request

pattern in basic work in literature [2][8][9][15][16].

The LRU and LFU hit rates for uniform request shown in

Figure 3 are equal the ratio M/N of the cache size to the cata-
logue and mark a common worst case for both strategies.

However, predictive optimum caching achieves much higher

hit rates hOpt, which mainly depend on the fraction M/N, with

almost identical curves for N = 103, …, 106 within the bounds

.

Figure 2: Cache performance for a one week web request trace

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

C
a

c
h

e
 H

it
 R

a
te

Cache size: M; Catalogue size: N ≈≈≈≈ 2.09 Mio. Keys

Number of Requests in the Trace over one Week: R ≈≈≈≈ 26 Mio.

Optimum Caching

LFU based on daily statistics

LFU based on total one week statistics

LRU

NMhNM /15.1/37.1 Opt >>

Figure 3: Hit rate of optimum caching for uniform requests

Figure 4: Cache hit rates for Zipf law requests with β = –0.5

Although uniform requests are a worst case for optimum cach-

ing as well, the gain over LRU and LFU is extreme, up to 37%.

Figure 4 shows results for β = –0.5 which corresponds to a
moderate request focus on popular objects within the relevant
range of web request pattern. The hit rates still mainly depend

on the fraction M/N of objects in the cache, leading to bundles

of four closely adjacent curves for N = 103 , …, 106 with larg-

est deviation for optimum caching in case N = 1000. Com-

pared to uniform requests, the hit rate gap of LRU and LFU

towards optimum caching becomes smaller but still opens up
to 30% for LRU and 20% for LFU.

For Zipf distributions with more skewness towards popular

objects for β → –1, caching efficiency depends on both param-

eters M and N, rather than mainly on M/N as for 0 > β > –0.5.

Thus Figure 5 (β = –0.75) and Figure 6 (β = –1) show two hit
rate curves for N = 104 and N = 106 for each of the three con-

sidered strategies. In general, cache hit rates essentially in-

crease for all caching strategies with higher request focus on

popular objects. However, LRU hit rates remain far below op-

timum caching in all cases of small and moderate cache sizes.

Figure 5: Cache hit rates for Zipf law requests with β = –0.75

Figure 6: Cache hit rates for Zipf law requests with β = –1

On the other hand, LFU can lower the hit rate gap towards

optimum caching for β → –1, since count statistics on past re-
quests are more useful for higher concentration on few popular

items. The results suggest hOpt – hLFU ≈ 0.25 + 0.2 β as a rough

estimate of the gap for –0.5 ≥ β ≥ –1. Extensions for β < –1
are possible, but this range is not relevant for web caching.

VI. USING LIMITED KNOWLEDGE OF FUTURE REQUESTS

A. Look-ahead options for caching due to delayed uploads

The previous results show a significant advantage of opti-

mum caching over other methods owing to knowledge of fu-

ture requests. Often some partial knowledge about upcoming

requests is available and used for prediction and prefetching

[1][6]. Within this scope, we evaluate how far a limited look-

ahead can realize part of the optimum caching gain when a

fixed number L of the next upcoming requests are known,

which corresponds to a more or less fixed time window.

Such a limited look-ahead can be realized, when there is a

delay between a request and the corresponding upload of con-

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

H
it

 R
a
te

M/N (Cache Size M as a Fraction of the Catalogue Size N

Optimum Caching: N = 1 000 000

Optimum Caching: N = 100 000

Optimum Caching: N = 10 000

Optimum Caching: N = 1 000

LFU & LRU: All Catalogue Sizes N

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

H
it

 R
a

te

M/N (Cache Size M as a Fraction of the Catalogue Size N)

Optimum Caching: N = 1 000 000

Optimum Caching: N = 100 000

Optimum Caching: N = 10 000

Optimum Caching: N = 1 000

LFU: N = 1 000 000

LFU: N = 100 000

LFU: N = 10 000

LFU: N = 1 000

LRU: N = 1 000 000

LRU: N = 100 000

LRU: N = 10 000

LRU: N = 1 000

·105

… …

·103
·104

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

H
it

 R
a

te

Cache Size M for Zipf Distributed Requests with ββββ = -0.75

Optimal Caching: N = 10 000

LFU: N = 10 000

LRU: N = 10 000

Optimal Caching: N = 1 Mio.

LFU: N = 1 Mio.

LRU: N = 1 Mio.

·105

… …

·103
·104

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

H
it

 R
a

te

Cache Size M for Zipf Distributed Requests with ββββ = -1

Optimal Caching: N = 10 000

LFU: N = 10 000

LRU: N = 10 000

Optimal Caching: N = 1 Mio.

LFU: N = 1 Mio.

LRU: N = 1 Mio.

)

tent to the cache. During the delay time some “future” requests

become visible which can still be regarded in a replacement

decision until the update is actually processed. Data uploads
are initiated only in case of cache misses, when external ob-

jects is requested that have to be retrieved from a server or

higher layer cache. Therefore we can always assume a short

transfer delay for web cache updates between data centers,

roughly in a range of 0.1s - 1s for small data units.

A considerable number of requests is served by web caches
already in short time. Wikipedia as a popular web site reported

peaks of over 50 000 requests per second in 2014 being han-

dled by a few caching servers [24]. Akamai’s CDN had peak

loads beyond 30 million requests per second in 2013 [7], which

are distributed over a large web caching hierarchy. Thus cach-

es for popular web content usually have information about
several thousand upcoming requests available until data is

retrieved for an update, even in short transfer delay scenarios.

Moreover, we consider video streaming as a scenario with

much longer upload times, when uploads are synchronized with

the video stream to the user. Then data is continuously trans-

ferred in small chunks during the video viewing time, which
can last in a range over seconds and minutes up to an hour

[14]. While data chunks of a video in the cache are being over-

written, new requests to the video can be regarded in a look-

ahead scenario to stop further replacement. When the replace-

ment of a one minute video is stopped, e.g. after 15 s, then
75% of the data can still be kept to serve a new request.

B. Combined caching scheme to exploit limited look-ahead

In order to utilize a limited look-ahead L for improved hit

rates, we suggest combining Belady´s algorithm for those ob-

jects with known next request time (< L) with a secondary

usual caching scheme (LFU, LRU etc.) for all other objects.

At a request rT, all objects in the cache with a next request

before rT+L+1, i.e. within the look-ahead window are sorted

according to their next request time as shown for Belady’s

algorithm in Figure 1. The next request time of other cached

objects is unknown and invalidated, e.g. as 0. After request rT,

the sorted list is updated by reinserting the requested object, if
its next request comes before rT+L+1. The object requested at

rT+L+1 is added at the end of the list, if the latter is in the cache

with a previously invalid next request time.

If the sorted cache list of object with valid next request

times exceeds the cache size M, then the object with the far-
thest next request time is evicted. Otherwise, if the list is

shorter than the cache size, then all objects in the list stay in

the cache, whereas the secondary caching strategy (LRU, LFU

or another) is applied to select and update the content in the

remaining part of the cache.

C. Hit rate evaluation for the limited look-ahead scheme

We simulate the gain obtainable by a limited look-ahead for

the next L requests using a combined strategy of optimum
caching with LRU. We show two evaluations extending the

previous results for the one week trace of Figure 2 and for the

Zipf distributed requests with β = –0.5 of Figure 4.

The performance of limited look-ahead is presented for both

cases in Figure 7 and Figure 8, respectively. They include the

curves for the optimum caching hit rate and for LRU known
from Figure 2 and Figure 4 as the maximum and the mini-

mum. Moreover, four curves are added in between, corre-

sponding to evaluations of four look-ahead variants with dif-

ferent limit L. In each case we observe a common effect that

caching performance of limited look-ahead

• starts along the optimum caching curve up to cache size M*,

• then only slightly improves with increasing cache size be-

yond M*, while sliding from optimum caching performance

towards the LRU curve

• and finally approaches the LRU curve for large cache size.

Figure 7: Effect of limited look-ahead for trace data

Figure 8: Effect of limited look-ahead for Zipf law requests

When optimum caching performance is achieved, the cache

is almost filled with objects whose next request comes in the

limited look-ahead region before rT+L+1. Otherwise, many ob-

jects are encountered, whose next request comes beyond the

limit. We obtain similar results for combinations with LFU or
another strategy instead of LRU, where the LRU hit rate is

replaced by their curve as the lower bound.

D. Analytical result on optimum limited look-ahead caching

We can derive an analytic result for the cache size M* up to
which optimum caching is fully exploited with limited look-

ahead for IRM requests. M* marks the points in Figure 8, at

C
a

ch
e

H
it

 R
a

te

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Cache size M;

Catalogue size N ≈≈≈≈ 2.09 Mio. keys; Trace Oct. 17 - 23 with 26 Mio. Requests

Optimum Caching: Unlimited Look-Ahead

Look-Ahead over 100 000 Requests

Look-Ahead over 10 000 Requests

Look-Ahead over 1 000 Requests

Look-Ahead over 100 Requests

LRU Cache Hit Rate

C
a

ch
e

H
it

 R
a

te

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Cache size M (N = 100 000; Zipf law requests with ββββ = -0.5)

Optimum Caching: Unlimited Look-Ahead

Look-Ahead over 100 000 Requests

Look-Ahead over 30 000 Requests

Look-Ahead over 10 000 Requests

Look-Ahead over 1 000 Requests

LRU Cache Hit Rate

which the limited look-ahead curves start to deviate from op-

timum caching. Under IRM, we have geometrically distributed

intervals Ij between requests to the same object oj depending
on the request probability pj. We can compute the probability

Pr{Ij ≤ L} that the next request comes within the limit L, the

mean number E(Ij | Ij ≤ L) of requests that such an object oj has

to stay in the cache until a next hit on oj. Both values finally

determine the mean number E(n≤ L) of objects with next re-

quest before rT+L+1:

==

≤ −+−=≤≤=

−−

−
−=≤−−=≤

N

j

L

jj

N

j

jjjjL

L

j

L

j

j

jj

L

jj

pLpLIIELIpnE

p

pL

p
LIIEpLI

11

)1)(1(1)|(}Pr{)(

;
)1(1

)1(1
)|(;)1(1}Pr{

 If M < E(n≤ L) then the cache is expected to fill up with ob-
jects having a valid next request time within the limit L, such

that optimum caching is prevalently applied for updates. We

calculate E(n≤ L) for the four curves with different limits L in

Figure 8 based on the underlying Zipf request probabilities pj :

E(n≤ 1000) ≈ 12.7; E(n≤ 10 000) ≈ 740.3; E(n≤ 30 000) ≈ 4328; E(n≤ 100 000)

≈ 23 079. Those numbers precisely mark the cache sizes at
which each limited look-ahead curve starts deviating from

optimum caching.
The results in Figure 7 and Figure 8 indicate that the pro-

posed combined caching strategy with limited look-ahead has

significant effect for L ≥ 10 000, and in the trace evaluation

already for L ≥ 1 000. The trace is taken from a cache serving

about 100 requests per second. Thus a delay of 10 s - 100 s is

sufficient to make an exploitation of the look-ahead beneficial.
Concluding, the look-ahead can improve cache efficiency for

video streaming, with delays of > 10 s until most of the data is

uploaded, whereas for short transfer delays < 1 s the look-ahead

will be reasonable only for caches serving huge request rates.

CONCLUSIONS AND OUTLOOK

 The comparison of usual non-predictive caching schemes
with clairvoyant optimum caching due to Belady’s algorithm
shows large gaps in the hit rate not only in extreme cases for
uniform requests, but also over the complete range of Zipf re-
quest pattern that is confirmed to be relevant for web caching
in literature. The results in Figure 3 - Figure 6 give an overview
of the expected hit rate performance and differences in compar-
ison of optimum caching, LFU and LRU for the independent
reference model. Our trace-based study confirms that such Zipf
distributed IRM results meet request pattern on web platforms.

The evaluation of a combined caching method making use of
limited look-ahead scenarios enabled by delays in cache up-
loads show that optimum caching is useful not only to provide
an upper bound on cache hit rates, but can partly be exploited
for caching of video streams and for caches serving huge re-
quest workloads. A more detailed analysis of the impact of
caching and request specific parameters on the applicability of
the limited look-ahead scheme is for future study.

ACKNOWLEDGEMENTS

This work has received funding from the European Union´s
Horizon 2020 research and innovation programme in the EU

SSICLOPS project <www.ssiclops.eu> under grant agreement

No. 644866. This work reflects only the authors’ views and

the European Commission is not responsible for any use that
may be made of the information it contains.

REFERENCES

[1] N. Beckmann and D. Sanchez, Maximizing cache performance under
uncertainty, Proc. 23rd HPCA Conf. (2017)

[2] L.A. Belady, A study of replacement algorithms for a virtual-storage
computer, IBM Systems Journal 2 (1966) 78-101

[3] L. Breslau et al., Web caching and Zipf-like distributions: Evidence and
implications, Proc. IEEE Infocom (1999)

[4] H. Che, Y. Tung, and Z. Wang, Hierarchic web caching systems: mode-
ling, design and experimental results, IEEE JSAC 20(7) (2002) 1305-14

[5] F-Secure Inc. <www.f-secure.com>

[6] J. Famaey, F. Iterbeke, T. Wauters and F. De Turck, Towards a predic-
tive cache replacement strategy for multimedia content, Journal of Net-
work and Computer Applications 36/1 (2013) 219-227

[7] P.W. Gilmore, Akamai & ISPs, Presentation UKNOF25 (2013)
<slideplayer.com/slide/10588098>

[8] J. Guo et al., The power of Belady’s algorithm, Proc. 16th Workshop on
Languages and Compilers for Parallel Computing, College Station, TX,
USA, Springer Lecture Notes in Computer Science, LNCS 2958 (2003)
374-390

[9] G. Hasslinger, Markov analysis of optimum caching as an equivalent
alternative to Belady’s algorithm without look-ahead, Proc. MMB 2018,
Springer LNCS 10740, Erlangen, Germany (2018) 35-52

[10] G. Hasslinger and F. Hartleb, Content delivery and caching from a
network provider’s perspective, Special Issue on Internet based Content
Delivery, Computer Networks 55 (Dec. 2011) 3991-4006

[11] G. Hasslinger, K. Ntougias and F. Hasslinger, Performance and Preci-
sion of Web Caching Simulations, Proc. 18th MMB Conf., Münster,
Germany, Springer LNCS 9629 (2016) 60-76

[12] G. Hasslinger, K. Ntougias, F. Hasslinger and O. Hohlfeld, Performance
evaluation for new web caching strategies combining LRU with score
based object selection, Computer Networks 17 (2017) 172-186

[13] G. Hasslinger et al., Web Caching Evaluation from Wikipedia Request
Statistics, Proc. 15th Symposium on Wireless Optimization (WiOpt’17),
CCDWN workshop, Paris (2017)

[14] M. Hefeeda and O. Saleh, Traffic modeling and proportional partial
caching for peer-to-peer systems, IEEE/ACM Trans. on Networking
16/6 (2008) 1447-1460

[15] A. Jain and C. Lin, Back to the future: Leveraging Belady’s algorithm
for improved cache replacement, in Proc. ISCA-4, (2016)

[16] D.E. Knuth, An analysis of optimum caching, Journal of algorithms 6
(1985) 181-199

[17] D. Lee et al., LRFU: A spectrum of policies that subsumes the least
recently used and least frequently used policies, IEEE Transactions on
Computers 50/12 (2001) 1352-1361

[18] N. Megiddo and S. Modha, Outperforming LRU with an adaptive re-
placement cache algorithm, IEEE Computer (Apr. 2004) 4-11

[19] M. Pathan, R.K. Sitaraman and D. Robinson, Advanced content deliv-
ery, streaming and cloud services, Wiley (2014)

[20] S. Podlipnik and L. Böszörmenyi, A survey of web cache replacement
strategies, ACM Computer Surveys (2003) 374-398

[21] A.A. Rocha et al., DSCA: Data stream caching algorithm, Proc.
CCDWN workshop, Heidelberg, Germany (2015)

[22] K. Shah, A. Mitra and D. Matani, An O(1) algorithm for implementing
the LFU cache eviction scheme (2010) Technical report, available via
<dhruvbird.com/lfu.pdf>

[23] S. Traverso et al., Unravelling the impact of temporal and geographical
locality in content caching systems, IEEE Trans. on Multimedia 17
(2015) 1839-1854

[24] Wikipedia statistics and information available on
https://meta.wikimedia.org/wiki/Wikimedia_servers

https://wikitech.wikimedia.org/wiki/Global_traffic_routing

